Math 304 (Spring 2015) - Homework 6

Problem 1.

Find the transition matrix from the basis $\{u_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}\}$ to the standard basis $\{e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$

Problem 2.

Let \mathbb{P}_2 be the vector space of polynomials with degree ≤ 2 . We know that $\{1, x, (x+1)^2\}$ is a basis of \mathbb{P}_2 . Find the coordinate vector of the polynomials $p(x) = x^2 - 1$ with respect to the basis $\{1, x, (x+1)^2\}$.

Problem 3.

Given the matrix

$$A = \begin{pmatrix} -3 & 1 & 3 & 4\\ 1 & 2 & -1 & -2\\ -3 & 8 & 4 & 2 \end{pmatrix}$$

- (a) Find a basis of the row space of A and use it to determine the rank of A.
- (b) Find a basis of the column space of A.
- (c) Find a basis of the null space of A.

Problem 4.

Determine whether the following mappings are linear transformations.

(a) $L: \mathbb{R}^3 \to \mathbb{R}^2$ by

$$L\begin{pmatrix}a\\b\\c\end{pmatrix} = \begin{pmatrix}a+b\\c\end{pmatrix}$$

(b) $L: \mathbb{R}^3 \to \mathbb{R}^2$ by

$$L\begin{pmatrix}a\\b\\c\end{pmatrix} = \begin{pmatrix}a^2 + b^2\\c\end{pmatrix}$$

(c) Let \mathbb{P}_3 be the vector space of all polynomials with degree ≤ 3 . The mapping $L : \mathbb{P}_3 \to \mathbb{P}_3$ by

$$L(p(x)) = p'(x)$$

where p'(x) is the derivative of p(x).

(d)
$$L: \mathbb{P}_2 \to \mathbb{P}_3$$
 by
(e) $L: \mathbb{P}_2 \to \mathbb{P}_3$ by
 $L(p(x)) = x \cdot p(x)$
 $L(p(x)) = p(x) + x^2$

Problem 5.

Find the matrix representations of the following linear transformations.

(a) Let L be the linear transformation from \mathbb{R}^3 to \mathbb{R}^3 by

$$L\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_2 - x_3\\ 2x_2 - x_1 - x_3\\ 2x_3 - x_1 - x_2 \end{pmatrix}$$

Find the standard matrix representation of L.

(b) The vectors

$$v_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, v_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, v_3 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

form a basis of \mathbb{R}^3 . Let L be the linear transformation from \mathbb{R}^2 to \mathbb{R}^3 defined by

$$L\binom{x_1}{x_2} = x_1v_1 + (x_2 + x_1)v_2 + (x_1 - x_2)v_3.$$

Find the matrix representation of L with respect to the bases $\{e_1, e_2\}$ (the standard basis of \mathbb{R}^2) and $\{v_1, v_2, v_3\}$.

(c) The vectors

$$v_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, v_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, v_3 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

form a basis of \mathbb{R}^3 . Let L be the linear transformation from \mathbb{R}^2 to \mathbb{R}^3 defined by

$$L\begin{pmatrix} x_1\\ x_2 \end{pmatrix} = x_1v_1 + (x_2 + x_1)v_2 + (x_1 - x_2)v_3.$$

Find the matrix representation of L with respect to the standard bases.